
ISRAEL JOURNAL OF MATHEMATICS 8"g (1994), 289-324 

AMENABILITY OF BANACH ALGEBRAS 
OF COMPACT OPERATORS 

BY 

N .  GRONB/EK 

Matematisk Institut, Universitetsparken 5 

DK-2100 Kcbenhavn O, Denmark 

AND 

B.  E .  JOHNSON* 

Department of Mathematics and Statistics 

University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU England 

AND 

G. A. WILLIS* 

Department of Mathematics, The University of Newcastle 

New South Wales 2308, Australia 

ABSTRACT 

In this paper  we study conditions on a Banach space X that  ensure that  

the Banach algebra ]C(X) of compact operators is amenable. We give a 

symmetrized approximation property  of X which is proved to be such a 

condition. This property is satisfied by a wide range of Banach spaces 

including all the classical spaces. We then investigate which constructions 

of new Banach spaces from old ones preserve the property  of carrying 

amenable algebras of compact  operators. Roughly speaking, dual spaces, 

predual spaces and certain tensor products  do inherit this property  and 

direct sums do not. For direct sums this question is closely related to 

factorization of linear operators.  In the final section we discuss some open 

questions, in particular, the converse problem of what  properties of X are 

implied by the amenability of ]C(X). 
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0. In t roduc t ion  

Amenability is a cohomological property of Banach algebras which was intro- 

duced in [J]. The definition is given below. It may be thought of as being, in 

some ways, a weak finiteness condition. For example, amenability of C*-algebras 

is equivalent to nuclearity, see [Haa]. Also, a group algebra, LI(G), is amenable 

if and only if the locally compact group, G, is amenable, see [J], and many theo- 

rems valid for finite or compact groups have weaker generalizations to amenable 

groups but to no larger class. This equivalence is the origin of the term for Banach 

algebras. However, in some situations amenability is not a finiteness condition. 

For example, a uniform algebra is amenable if and only if it is self-adjoint, see 

[Sh], and, for finite dimensional Banach algebras, amenability is equivalent to 

semisimplicity, [Li, Theorem 1.3]. 

The significance of amenability for some classes of Banach algebras suggests 

the question as to what it means for other Banach algebras. In this paper we 

investigate the amenability of the algebras of compact and of approximable op- 

erators on the Banach space X. This was begun in [J], where it is shown that 

~(X)  is amenable if X is gp, 1 < p < oo, or C[O, 1]. (]C(X) denotes the algebra 

of compact operators on X and ~'(X) the algebra of approximable operators.) 

Relevant properties of Banach spaces, such as the approximation property, are 

now understood better than they were when [J] was written and so we are able 

to make more progress. 

We have not yet found such clear characterizations of amenability for the al- 

gebras of approximable and compact operators as are known for classes of alge- 

bras mentioned in the first paragraph. It does appear though that amenability 

of 9~(X) and ~(X)  may be equivalent to certain approximation properties for 

X. One immediate observation is that, since amenable Banach algebras have 

bounded approximate identities, if the algebra of compact operators on X is 

amenable, then, by [D, Theorem 2.6], X has the bounded compact approxima- 

tion property and, if the algebra of approximable operators is amenable, then X 

has the bounded approximation property. Moreover, results in [G&W] and [Sa] 

show that, if K:(X) is amenable, then X* has the bounded compact approxima- 

tion property and, if 2=(X) is amenable, then X* has the bounded approximation 

property. It follows that, if ~'(X) is amenable, then ~(X)  = .~(X). 

Amenability of ~ (X)  is not equivalent to X or X* having the bounded ap- 

proximation property however, as examples in the paper show. Some sort of 
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symmetry also seems to be required. In Section 3 we formulate a symmetrized 

approximation property, called property (A) , such that,  if X has property (A) , 

then ~ ( X )  is amenable. This formulation is an abstract version of the argument 

used in [J]. We show that,  if X has a shrinking, subsymmetric basis, then it has 

property (A) and hence ~ ( X )  is amenable. Many spaces which do not have such 

a basis also have property (A) . 

The necessity of some sort of symmetry becomes apparent when we consider 

the stability of the class of spaces X such that ~ ' (X) is amenable. Subject to 

some restrictions, this class of spaces is closed under tensor products and taking 

duals, as is shown in Sections 2 and 5. However, it is not closed under direct sums 

or passing to complemented subspaces, see Section 6. The results in Sections 5 

and 6 depend on some new stability properties for amenable Banach algebras 

which we establish in those sections. 

Many questions remain to be answered before we understand fully the connec- 

tion, if any, between amenability of ~ ' (X) or ~ ( X )  and approximation properties 

of X. These questions are discussed in the last section of the paper. We do not 

investigate other homological properties of ~ '(X) and /E(X). One other such 

property has been studied in [Ly]. 

We now give the definition of amenability for Banach algebras. It is made 

in terms of Banach modules and derivations. Recall that,  for a Banach algebra 

`4, a Banach space X is a Banach .4-bimodule if X is a .4-bimodule and there 

is a constant g such that [[a.x[[ _< g[[a[[ [[x[[ and [Ix.a[[ _< g[[a[[ [[x[[ for each 

a in .4 and x in X. If X is a Banach A-bimodule, then the dual space, X*, 

is a Banach `4-bimodule with the actions defined by ( a . x * , x )  = ( x * , x . a  I and 

(x*.a, x)  = (x*, a .x) ,  for a in .4, x in X and x* in X*. A derivation into an 

.4-bimodule X is a linear map D: .4 --* X such that  D(ab)  = a .D(b)  + D(a) .b ,  

for all a, b in A. If x belongs to X, then the map a ~ a .x  - x .a  is a derivation 

into X. Such derivations are called inner. 

Defini t ion  0.1: The Banach algebra A is amenable if, for every Banach .4- 

bimodule X, every continuous derivation D: A --* X* is inner. 

See [J, Section 5], or [B&D, Definition VI.2]. 

This definition will sometimes be used directly but  we will often use another 

characterization of amenability, namely that  A is an amenable Banach algebra 

if and only if A@`4  has an approximate diagonal. An approximate diagonal is a 
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bounded net, {d~}xeh, in A@A such that 

lim ][a.dx - d~.a[] = 0 and lim ]]rr(dx)a - a[] = 0 (a • A), 
A--*oo )~--~oo 

where ~r denotes the product map .A@.A ---+ .,4 and module actions on A@A are 

defined by a.(b ® c) = (ab) ® c and (b @ c).a = b ® (ca), for a, b and c in A. If 

we define a product on A@A by (a ® b)(c @ d) = ac ® db, then the first of these 

conditons can also be stated as 

lim [ [ ( a ® l - l ® a ) d x [ [ = 0  ( a • A ) ,  

where 1 is a formally adjoined unit. Approximate diagonals are useful, for exam- 

ple, when we show that, if X has property (A), then ~ ( X )  is amenable. 

1. N o t a t i o n  

We begin by establishing notation. Throughout, X and Y will denote (infinite 

dimensional) Banach spaces and X* the space of bounded linear functionals on 

X with its usual norm. Small letters x etc. will denote elements in X, whereas 

x* etc. will denote elements in X*. We will consider the following classes of 

operators: 

F ( X , Y )  = 

y v ' ( x , z )  = 

= 

K ( X , Y )  = 

{finite rank operators X --+ Y}, 

{nuclear operators X --+ Y}, 

uniform closure of F ( X ,  Y)  

{approximable operators X --+ Y}, 

{compact operators X --+ Y}, 

Z(X,  Y) = {integral operators X ~ Y}, 

B(X,  Y)  = {bounded operators X -+ Y}. 

We shall write F ( X )  instead of F(X ,  X)  etc. 

These are all two-sided operator ideals in B(X,  Y),and when X = Y they are, 

except F(X) ,  Banach algebras in their natural norms. We refer the reader to 

any of [D&U], [Pie], [Pis] for details. 

Finite rank operators will, when convenient, be written as tensors, that  is, if 

xT , . . . ,  x* E X* and y l , . . . ,  Y,, e Y, we shall denote the operator x --+ ~ x~(x)yi 

by X:yi x;. 
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If S E B(X, Y) we denote the adjoint map in B(Y*, X*) by S a, i.e. 

(s(x), y*) = (x, s°(y*)) (x e x ,  y* e Y*). 

I f M  C B(X,Y) we define M ~' C_ 13(Y*,X*) by 

M" = {T ~] T E M}. 

This should not be confused with the notation for dual space. For instance, if 

X has Grothendieck's approximation property, then A/'(X)* = 13(X*), whereas 

Af(X) a is the set of so-called X-nuclear operators on X*. 

We shall use the concepts left approximate identity, bounded left approximate 

identity etc. in accordance with [B&D]. 

2. Tensor products  

It is of course important to be able to form new Banach spaces from old ones while 

preserving the property of carrying amenable algebras of compact operators. 

The first case to be considered is that of taking tensor products because many 

important spaces can be viewed as appropriate tensor products, for instance 

Lp-spaces with values in a Banach space. We shall here investigate whether 

amenability of /E(X) and /(:(Y) implies amenability of /E(Z), when Z is the 

completion of X ® Y in some crossnorm topology. An obvious approach to this 

problem is to try to show that/C(X) ® ]C(Y) is a dense subalgebra of/(:(Z) and 

then to deduce amenability of ]C(Z) from that of )E(X)@IC(Y) by an appeal to [J, 

Corollary 5.5]. This program is considerably easier to carry through if X and Y 

have the approximation property. However, rather than making this assumption, 

we prefer to work with approximable operators instead of compact operators. 

The definition to follow describes what is needed for above mentioned program 

to work. 

De/inition 2.1: Let X and Y be Banach spaces and let a be a crossnorm on 

X ® Y. Denote the completion by X ®~ Y. We call X ®~ Y a t ight  tensor 

product of X and Y, if the following two conditions hold: 

(i) There is K > 0 so that for all S E iT(X), T E ~P(Y) the operator on X ® Y 

given by 

( S ® T ) x ® y = S x ® T y  ( x E X ,  y E Y )  

has a- operator norm not exceeding KI[SIIIITII. 

(ii) span{S ® T [ S E ~(X),  T E ~:(Y)} is dense in ~'(X ®, Y). 
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Remark: The condition (i) is apparently weaker than Grothendieck's Q-norm 

condition [Gr, Ch.l.3] in that it only concerns finite rank operators on a tensor 

product into itself. 

With this definition we have the obvious: 

THEOREM 2.2: Suppose that 3c(X) and :Tz(Y) are amenable and that X ®~, Y 

is a tight tensor product. Then .T(X ®~ Y) is amenable. 

Proof [J,Corollary 5.5]. | 

To apply this theorem we need to be able to recognize tight tensor products. 

The following easy proposition is helpful. It shows that, as usual when dealing 

with tensor products, it is important to be able to identify (X ®~ Y)*. We shall 

view (X ®~ Y)* as a subspace of B(Y, X*) (or equivalently of B(X, Y*)). We 

give B(Y, X*) the canonical structure as a right Banach module over 9r(X) and 

IT(Y), that is, the module actions are the restrictions of the canonical actions of 

B(X) and B(Y). 

PROPOSITION 2.3: Let X and Y be Banach spaces and let a be a crossnorm on 

X @ Y. Then X @~ Y is a tight tensor product if and only if the following two 

conditions hold: 

(i) (X ®~ Y)* is a right Banach IT(X)- and iT(Y)-submodule of l3(V, X*) 

(ii) X* ® Y* is norm dense in (X ®~ Y)*. 

Proof (i) Let z -- ~x~®yi  E X ® Y ,  let ¢ E (X@~Y)*, and let S E IT(X), T E 

IT(Y). Then 

(S ® T z, ~) = ~ ( S x i  ® Tyi, ¢) 

= <Z, sa~?T),  

so that S ® T  is a-bounded with HS®T}}~ <_ KI[SI[[IT}[ if and only if the Banach 

module properties hold with module constants K x K v  <_ K. 
v 

(ii) We shall use the identification IT(Z) = Z ® Z*. The canonical map IT(X)® 

.T(Y) ~ IT(X ®a Y) then becomes 

v v ® x*) ® (y (x* ® y*). 

v 
Using the injective property of ®, it is now clear that the image of IT(X) @~'(Y) 

is dense if and only if X* ® Y* is dense in (X ®~ Y)*. | 
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Recall that a crossnorm is called r e a s o n a b l e  if the dual norm is also a cross- 

norm. In this case tightness is particularly easy to describe. 

COROLLARY 2.4: Suppose that a is a reasonable crossnorm on X @ Y and that 

the module property 2.30) holds. Then X ®o Y is tight if and only if 

Y*, 

where a* denotes the dual norm. 

With Proposition 2.3 at hand we can now give conditions for tightness for some 

important tensor products. From 2.3(ii) it is not surprising that the Radon-  

Nikodym property enters the picture. 

THEOREM 2.5: Let X and Y be Banach spaces, let [0, 1] be the unit interval, 

and let (~2, ~, #) be a a-finite measure space. Then 

(W) The following are equivalent: 
v 

(i) X ® Y is tight for all X.  

(ii) C([0, 1 ] ,Y) is  a tight tensor product of C[O, 1] and Y. 

(iii) Y* has RNP. 

(P) X ~ Y  is tight if and only if ~(Y ,X*)  = B(Y,X*). 

(M) Lv(#, X ), 1 <_ p < oo is a tight tensor product of Lp(#) and X ff  and only 

if X* has RNP with respect to #. 

Proof: The identification of (X @~ Y)* with a subspace of B(Y,X*) gives in 

the cases (W) and (P) Z(Y, X*) and 13(]1, X*) respectively, so the module prop- 

erty 2.3(i) is obvious for these tensor products. Next, let S E ~-(Lp(#)) and T E 

~'(X). From the proof of Proposition 2.3(i) it follows that it is enough to show the 

submultiplicativity of the module norm for ¢ belonging to a norm determining 

subset of Lp(lt, X)*. Let l /p+ 1/p' = 1. Since Lp, (#, X*) is isometrically embed- 

ded in Lp(#, X)* and since Lp(#, X)  is isometrically embedded in Lp,(#, X*)* it 

suffices to look at ¢ E B(Lp(#), X*) coming from an element g E Lp, (#, X*).With 

the identifications being made we have 

(I)(f) = L f g  d/~ ( f  E Lp(/~)). 

Then for S E B(Lp(/~)) and T e B(X) 

T°¢S(I) = f .  S( I)T° o g @. 
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An appeal to the vector valued version of Hblders inequality, gives the desired 

norm inequality. 

We now consider the statement 2.3(ii) in our three cases. First we look at 
V 

(W). Since (X ® Y)* = I(Y, X*) we are asking whether the finite rank operators 

X* @ Y* are dense in I(Y, X*) in the integral norm. The implication (i) ~ (ii) is 

obvious and (iii) =~ (i) is valid because, if Y* has RNP, then Z(Y, X*) = Af(Y, X*) 

isometrically, [D&U, Theorem VI.4.8, Corollary VIII.2.10]. The implication (ii) 

=~ (iii) is true because, under the assumption (ii), F(C[0, 1],Y*) is dense in 

:Z'(C[0, 1], Y*). (We are here using the symmetric r61es of C[0, 1] and Y.) By 

[D&U, Theorem VI.3.12, Corollary VIII.2.10] every absolutely summing opera- 

tor C[0, 1] --* Y* is nuclear since, by [Pie, Proposition 10.3.1], Z(C[0, 1], Y*) = 

Af(C[0, 1], Y*). The RNP of Y* is now the content of [D&U, Corollary VI.4.6]. 

In the case (P) we just have to observe that (X~Y)* = B(Y, X*) and 

el(X* ® Y*) = ~(Y, X*). 

Finally, as already noticed, Lp, (#, X*) is isometrically isomorphic to a sub- 

space of Lp(#, X)*. As a consequence Lp(#, X) is tight if and only if Lp(/t, X)* = 

Lv,(#,X*).  But this is equivalent to X* having RNP with respect to #, see for 

instance [D&U,Theorem IV.I.1]. 

From a classical theorem by Pit t  [Pit] we get an immediate consequence of 

Theorem 2.5.(P). 

COROLLARY 2.6: ~pQ~q is tight if and only if l/p + 1/q < 1. 

COROLLARY 2.7: H X* has RNP and IT(X*) is amenable, then 9t'(3v(X)) is 

amenable. 

Proof By Corollary 5.3 below, amenability of ~'(X*) forces amenability of 
V 

.T(X). The identification .T(X) = X ® X* shows that ~ '(X) is a tight tensor 

product of X and X*. | 

3. D iagona l s  for Mn(C) 

For many Banach spaces X, in particular the classical spaces, it is possible to 

prove that /C(X) is amenable as a consequence of a uniform local structure of X,  

that is, as a consequence of a property of finite dimensional subspaces. Before 

we set the scenario in which this approach will work we shall take a closer look 

at finite dimensional spaces. It is well known and easy to prove that M,~(C) 

is amenable. In this section we shall view this in terms of faithful irreducible 
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representations of finite groups. However, rather than speaking about faithful 

representations we shall consider finite subgroups of Gln(C). Likewise, we shall 

express irreducibility as a property of the embedding of the group into M,~(C). 

LEMMA 3.1: Let ~: ~ --~ Gln(C) be an n-dimensional representation of a group 

G. Then ~ is irreducible if and only ifspan~(G) = Mn(C). 

Proof We extend the representation to the group algebra C_~. Then the lemma 

is an easy consequence of Jacobson's density theorem, [B&D, Theorem 24.10]. 
| 

Henceforth we shall deal with finite subgroups of Gin (C) spanning the whole 

of M~(C). These we shall call irreducible (n x n)-matr ix  groups. The connec- 

tion of such with amenability of M.(C) is described in the following proposition. 

The symbols eij denote as usual the matrix units. 

PROPOSITION 3.2: Let G be a finite irreducible (n x n)-matrix group. Then 
1 n Y~ge9 g N g-1 is equal to the canonical diagonal do = -~ Ei,j-=l eij® ejl for 

Mn(C). The canonical diagonal do is the only element of M~(C) ® M,~(C) which 

is simultaneously a diagonal for M,,(C) and for the opposite algebra M,, (C) °p. 

Proof 

(3.1) 

and 

Let d = ~ ~ge~ g ® g-1. That d is a diagonal for Mr(C) means 

 a9®9-1 =  g®g-la (a Mn(C)) 
gE~ gE~ 

(3.2) zr(d) = I. 

Likewise, d being a diagonal for Mn(C) °p means 

(3.3) ~-':~,ga®g - l =  Z g ® a g  -1 (aEMn(C))  
gE~ ~E~ 

and 

(3.4) ,op(a) = I, 

where 7top is the opposite multiplication zrop(a ® b) = ba. 
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Since spanG -- Mn(C) it is enough to consider a C G and then exploit 

linearity. We prove (3.3): 

E g a ® g - l = E g a ® a ( g a ) - r  
gE~ gEG 

= E ~t®au- l"  
uEGa 

Since Ga = G, (3.3) follows. The identity (3.1) is proved similarly, and (3.2) 

and (3.4) are obvious. 

Simple computations with matrix units show that do satisfies all of (3.1), 

. . .  ,(3.4). Now let d = ~ ai ® b~ be any element satisfying (3.2) and (3.3) and 

write do = )-~d a~ ® b~. Then 

d=Eai®bi=Eai®b~a~bi  
i i,j 

= Ea,a ob;b, 

i,j 

= a ® b  i = do, 
J 

finishing the proof. Note that (3.1) and (3.4) follows automatically from (3.2) 

and (3.3), since do satisfies (3.1) and (3.4). II 

1 g-1 (The use of the average V~ ~ g e ~  g ® probably dates back to the early 

days of representation theory. It is a refinement of this which gives the equiva- 

lence of amenability of group algebras and the existence of invariant means, [J, 

Theorem 2.5].) 

Example 3.3: We shall several times in the sequel use irreducible matrix groups 

of the following kind. Let for t E {±1} n the corresponding n × n diagonal 

matrix be denoted by D(t). Let 7-/be a group of (n × n) permutation matrices 

corresponding to a transitive subgroup of the symmetric group Sn. Then 

G = {D(t)alt • { + l } " , a  • 7-/} 

is an irreducible (n x n)-matrix group. If 7-/= S~, then G is called t h e  m o n o m i a l  

g r o u p  o f  d e g r e e  n. 
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4. A m e n a b i l i t y  as a consequence  of  an  a p p r o x i m a t i o n  p r o p e r t y  

In this section we shall develop a method to lift uniformly the diagonals of a 

matrix algebra to form an approximate diagonal for ~'(X). The idea is illustrated 

by the example X = Lp(p). Locally Lp(p) looks like gp so we have 'local' 

diagonals. Furthermore, these diagonals are uniformly bounded (by 1). Using a 

direct limit argument we can form an approximate diagonal for all of J:(Lp(#)). 
This approach will work for all the classical spaces. The definition below 

is customised to make it work in a rather general situation. To formulate it let 

us first look at a finite biorthogonal system {(xi ,x;) lxi  • X; x; • X*; i , j  = 
1 , . . . ,  n}. Using this system we may define a map E: Mn(C) --* ~'(X) by 

E((a{j))= Z a , j x i ® x ; .  
i , j  

By biorthogonality, E is an algebra homomorphism. 

De~nition 4.1: Let X be a Banach space. We say that  X has property (A) it 

there is a net of finite biorthogonal systems 

• x ;  • x*;  i , j  = • h) 

and corresponding maps 

E~: M,~(C) --* ~c(X) (~ • A) 

such that  with P~ = E~(In~) the following hold: 

A(i) P~ ) l x  strongly. 

A(ii) P~ ) lx* strongly. 

A(iii) For each A there is an irreducible (nx × n~)-matrix group G~ such that 

sup{llE~(g)llop I g • G~, ~ • A} < oc. 

We now show how to lift the diagonals of the matrix algebras to ~'(X). 

THEOREM 4.2: Suppose X has property (A). Then ~'(X) is amenable. 

Proof'. With notation as in the description of property (A), define the net 

(d~)~eh in J~(X)~:~(X) by 

1 
d.x = I~)~1 Z E),(g) ® E,x(g -1) ()~ • A). 

gE~,~ 
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By assumption this is a bounded net. Observing that 7r(dx) = Px, we conclude 

by A(i) that (Tr(dx))XeA is a bounded left approximate identity for ~(X).  

Let F E ~-(X). Then 

F . d x  - d:~.F = ( F  - P x F P : ~ ) . d x  - d ~ . ( F  - P ~ F P ~ )  

+ P:~FP:~.d~ - d ~ , . P ~ F P ~  

= ( F  - P~,FP:~) .dx  - d ~ . ( F  - P : ~ F P ~ ) ,  

Remark 4.2 .a:  

than necessary. 

amenability: 

since ~ ~ g e ~  g ® g-1 is a diagonal for Mn~(C). By A(ii) (P~) is a bounded 

right approximate identity for .~(X), so that F.d:~ - d~ , .F  ~ O. | 

The condition of biorthogonality in property (A) is stronger 

The following asymptotic trace condition suffices to establish 

1 n), 
- -  x i , ~ ,  x i , ~ )  ~ 1 
n $  

i 

along A. With this condition replacing biorthogonality all statements in this 

section about property (A) remain valid. We have made no use of this greater 

generality and so do not give the details here. However, if X has property (A), 

then A(i) implies that X is a 7r-space and so probably there are spaces which 

satisfy the weaker condition but not property (A). (Note that apparently there 

are spaces with the bounded approximation property which are not 7r-spaces, see 

the introduction to [C&K].) 

Remark 4.2 .b:  Conditions A(i) and A(ii) together imply that X is what might 

be called a "shrinking 7rx-space", compare with the discussion in [G&W]. Thus, if 

X has a basis and P,~ is the projection onto the span of the first n basis elements, 

then ( P n )  satisfying A(i) and A(ii) implies that the basis is a shrinking basis. If, 

furthermore, (Pn) satisfies A(iii) with the monomial group of degree n, then the 

basis is a symmetric basis, see [L&T, Ch. 3a]. In this case X will have property 

(A), see also Theorem 4.5 below. 

Property (A) is preserved for some natural Banach spaces formed from the 

original space, as set forth in the next two theorems. This will enable us to 

establish amenability of .~'(X) for a large class of Banach spaces, including all 

the classical spaces. 
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THEOREM 4.3: Let  X be a Banach space. I f  X*  has proper ty  (A), then X has 

proper ty  (A). 

Proof." Let 

{(x*~,x*i)} (~eA) 

be a net of biorthogonal systems satisfying the conditions of (A) with respect to 

X*. Let/4 and I; be the sets of all finite dimensional subspaces of X and X* 

respectively, and let U E/4 and V E I; be given. By means of the principle of 

local reflexivity [L&T], choose a linear map 

Su, v,~: span({x*~ I i = 1 , . . . , nx}  U U) ,  , X 

such that 

(1) [ISu, v,~I[ <_ 2. 

(2) Su, v ,~iu = i v .  

(3) (Su, v, A rx ** ~ x*~ * ** ~,~j, , = (x ,x~,A for all ~* e span({~*A u V). 

We order/4 and 13 by containment and /4  x lY x A by the product order. 

By construction 

{(Sv,  v,~x*,*~,x~,A) ] i , j  = 1, . . . ,nA} ((U,V, A) E/4 x )2 x A) 

is a net of finite biorthogonal systems. We denote the corresponding lifts of 

matrix algebras by Ev, v,~, and the corresponding projections by Pu,v,A. Then 

P v ,  v ,~ = S v ,  v , ~ P ~ t x  , 

where tx is the canonical inclusion of X into X** and P~'s are the property (A) 

projections for X*. Clearly {Pv,v,x} is a bounded set and for x E U 

IJPu, v ,~ ,x  - xJl = JlSv ,  v , ~ , ( P , ~ x )  - xJl 
= IISu,  v , : , ( P ? , x  - x)ll 
< 211P~x - xll, 

where the two last steps follow from (1) and (2) above. Hence A(i) is satisfied 

Similarly for x* E V 

P~,v,~(x*) = ~ x~,A ® Su, v,~(x~i)Cx*) 

= { s u ,  

= ~ ( x * , x * i ) x ~ ,  ~ = V~(x*),  
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using (3), so that A(ii) is satisfied. The supremum in A(iii) is increased by at 

most a factor 2, using the same irreducible matrix groups: Gu,y,x --- ~x. 

We have thus found a net of finite biorthogonal systems which satisfies the 

conditions needed for property (A). | 

Property (A) also behaves nicely with respect to tensor products: 

THEOREM 4.4: Let X and Y be Banach spaces and let Z be a tight tensor 

product of X and Y. I f  X and Y have property (A), then so does Z. 

Proof: We write Z = X ®~ Y. Let (O~)~eA and (7~,),eM be property (A) nets 

of biorthogonal systems for X and Y respectively. We define the tensor product 

(O~ ® 7~)(x,~)eAxM to be the product ordered net of biorthogonal systems for 

X @~ Y given as 

o~ ® T~. = {(~ ® y,x* ® v*) I ( ~ , : )  e o~,  (y,v*) en.}. 

Using the identification M,,(C) ® Mp(C) = Mnp(C), one checks easily that 

the property (A) lifts 

E¢~,.): Mn~. (C)  -~ ~=(Z) 

are nothing but E(~,~,) = Cx ® D, ,  where C~ and Du are the lifts belonging to 

X and Y respectively. Hence A(i) holds for Z and, since X* ® Y* is dense in 

Z*, we also have A(ii). To obtain A(iii) it suffices to notice that,  if G and 7-/are 

irreducible (m x m)- and (n x n)-matrix groups, then G @ 7/ is an irreducible 

(ran x mn)-matrix group. | 

We shall now give some concrete examples of spaces with property (A). The 

first is very much in the spirit of [J, Proposition 6.1]. Recall that a basis (x,~),,eN 

in a Banach space X is called s u b s y m m e t r i c  if (xn)neN is unconditional and 

equivalent to the basis sequence (x,,,)ieN for every increasing sequence (n~)~eN, 

see [L&W, Ch. 3.a] and [Si, Ch. 21]. 

THEOREM 4.5: Suppose that  X has a subsymmetric and shrinking basis. Then 

X has property (A). 

Proo~ Let (x,~)neN be a subsymmetric and shrinking basis and let (x*)ncN be 

the associated sequence of coordinate functionals. Then 

{ ( x . x ; ) l  d,j = 1 , . . . , n }  (n e N) 
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is a sequence of finite biorthogonal systems satisfying the conditions of property 

(A). A(i) is immediate, A(ii) follows from the basis being shrinking. To prove 

A(iii) we shall use the following observations. 

Since (xn)neN is unconditional, the family of operators of the form 

(4.1) U ( ~ a n X n )  =E s (n )a~Xn ,  
\nE]~  nET 

where ~/C_ N and s E {±1} N, is uniformly bounded, say by K > O. The subsym- 

metry means that the family of operators of the form 

OO 

(4.2) A(m,)(ni)(x) = E X*,(X)Xn, 
i----1 

is uniformly bounded, say by M > 0. Here (mi)ie~ and (ni)ie~ are two arbitrary 

increasing sequences of integers. 

Let Gn be the subgroup of the monomial group of degree n defined by the 

permutation matrix a corresponding to the cyclic permutation (12.. .  n), i.e. 

~n = {D(t)a k It e {+1} n, k = 0 , . . . , n -  1}. 

By Lemma 3.1 Gn is an irreducible (n x n)-matrix group. We write elements in 

X as sequences. Then for g = D(t)a k we have: 

E(g)(~l, ~2,..., ~n,... ) = 

(t(1)~,~+l_k,..., t(k)~n, t(k + 1)~1,..., t(n)~n-k, 0,.. .  ). 

We see that E(g) has the form E(g) = A1U1 + A2U: for appropriate choices of 

operators Ui of type (4.1) and Ai of type (4.2). Hence the supremum in A(iii) 

does not exceed 2KM. | 

COROLLARY 4.6: Let X be a reflexive Orlicz sequence space or a reflexive Lorentz 
sequence space. Then X has property (A) and so J-'(X) is amenable. 

Proof." See [L&T, Ch. 4.hi for a discussion showing that these spaces satisfy the 

hypotheses of Theorem 4.5. | 

Remark 4.6.a: Actually the spaces of Corollary 4.6 have symmetric bases, so the 

proof of [J, Proposition 6.1] could easily be adapted to give amenability of $'(X) 
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in these cases. However, there are spaces with subsymmetric, non-symmetric 

bases, see for instance [Ga, § 5]. 

We shall now give sul~stance to the remark that  the setup of property (A) 

is customized to deal with the classical spaces. 

THEOREM 4.7: Let K be a compact Hausdorff space and let ( ~, ~, #) be a mea- 

sure space. Then C(K) and Lp(#) , 1 <_ p <_ cx), have property (A). 

Proof.- Since C(K)* = LI(IZK) for a suitable measure space (~g ,  ZK, ~ K )  and 

Loo(~) = C(K~,) for a suitable compact space Ku, it follows from Theorem 4.3 

that  it is enough to consider Lp(#) for 1 _< p < c~. We shall give the proof 

in detail in the case of a probability space, cf. the remark below. Let S be a 

finite collection of disjoint measurable subsets of ~ whose union is all of ~2. As 

it is customary in integration theory we order such dissections by S1 -< $2 if 

every set in S1 is a union of sets from $2. We define the biorthogonal systems in 

Lp(#) x Lp,(#) ~ + ~, = 1 by 

Os = {(XL, X~M) ] L, M C St ,  

where X. and X ~. denote indicator functions normalized in Lp(p) and Lp,(#) 

respectively. It is now a routine matter  to verify property (A). Let  Ps be the 

property (A) projections. For a measurable set M E ~ we have 

P s ( x M  ) = xM, 
(4.3) P (x; ) = 

whenever {M} -~ S, so A(i) and A(ii) are immediate. To prove A(iii), consider 

S = {M1, . . . ,  Mn} and define Gs to be the monomial group of degree n. Let 

g = D(t)a where t E {:t=l} n and a is a permutation matrix. First notice that  

n n 

II a, M, IIp = l p" 
i =1  i = 1  
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Using this we get for an arbitrary f E Lp(#) 

n 

llEs(g):ll p = II ~'_t(i)(.:, 
i=i 

= ~-'~l(f, XtM,>I p 
i=l 

<- ~ /M Iflp d# (Hblder Inequality) 

i=1 i 

= I1:11".  

Remark 4.7.a: A proof of the general case can be given along the same lines 

but with added minor technicalities. Alternatively, we may reduce it to the 

special case. We are interested only in finite-dimensional subspaces. Functions 

in such a subspace are supported on a or-finite measure space. The corresponding 

complemented subspaces of Lp(#) have projection constants uniformly bounded 

by 1 and are isometrically isomorphic to Lp-spaces of probability measures. 

Remark 4.7.b: The proof also works for a rearrangement invariant order con- 

tinuous function space, X, say on one of the intervals [0, 1] or [0, oo), for instance 

separable Orlicz or Lorentz functions spaces, see [L&T II, p. 120]. We are grateful 

to the referee for having brought this to our attention. To modify the proof we 

just have to choose the sets in S of equal measure. Since X is order continuous 

(4.3) will, as above, ensure that  A(i) and A(ii) hold. In the estimate of I[Es(g)fll 
we get IIEs(g)fll <_ ]lPsfll. A simple interpolation argument using [L&T II, 

Theorem 2.a.10] then shows that A(iii) holds. 

Combining Theorem 4.7 with Theorem 2.5 and Theorem 4.4 we get a large 

collection of Banach spaces carrying amenable algebras. 

COROLLARY 4.8: Suppose that X has property (A). If X* has RNP, then 
C(K, X) has property (A). If X* has RNP with respect to #, then Lp(#, X) 
has property (A) for 1 _< p < oo. 

COROLLARY 4.9: ~'(ep~fq) iS amenable if and only if 1/p + 1/q < 1. 

Proo~ By Corollary 2.6 jc(fp~£q) is amenable for 1/p + 1/q < 1. In [A&F] 

it is shown that, if r _< s, then B(fr,g8) = (er~fs,)* contains a complemented 
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copy of B(g2) and thus fails the approximation property, [Sz]. Hence, when 

1/p+ 1/q >_ 1, then ~'(gp@gq) does not have a bounded right approximate identity 

and is consequently not amenable. | 

Probably it is too much to hope that amenability of ~'(X) is equivalent to 

X having property (A). Since the approximate diagonal stemming from property 

(A) is obtained by means of lifts of the canonical diagonals of matrix algebras, it 

will have the approximate versions of the extra properties (3.3) and (3.4). It seems 

unlikely that such approximate diagonals should always exist, once amenability 

of ~(X) is established. In Section 6 we will see examples of spaces for which 

$'(X) is amenable but for which we do not know whether X has property (A) or 

even the weaker property mentioned in Remark 4.2.a. 

5. Dual  spaces 

We have seen that property (A) passes from a dual Banach space to its pre- 

dual. The following stability property for amenability implies an extension of 

this fact, namely, that if the algebra of approximable operators on a dual space 

is amenable, then the algebra of approximable operators on any predual of the 

space is amenable. It also implies a similar, but weaker, result for the algebra of 

compact operators. 

T H E O R E M  5 . 1  : Let ,4 be an amenable Banach algebra and Z be a closed, le[t ideal 

in A which has a bounded two-sided approximate identity. Then Z is amenable. 

Proof: It is convenient to define a new product on ~4@.A by (a @ b) • (c ® d) = 

ac ® bd, that is, • is the usual product on A@A. Let (d~)~eA be an approximate 

diagonal for A, let (ez)zeB be a bounded two-sided approximate identity for Z, 

and put 

p ~ = d ~ * ( e ~ ® e ~ )  ( a ~ A ;  /3 ,?EB) .  

Then, since I is a left ideal and (d~)~eA and (e~)~eB are bounded nets, p a ~  

belongs to a bounded subset of Z~/7. 
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For each c in 2- we have 

lim sup I 1 c . p ~ / 3 3 `  - po~3`-~ll 
,,f 

= lim sup ll(c ® 1) • do • (e/3 ® e3`) - do • (e~ ® e-y) • (1 ® e)ll 
3' 

= lim sup II((c ® 1) • do - do • (1 ® c)) • (ez N e~)ll 
3' 

= lim sup [l(c.d~ - do.c) • (ez ® e3`)l l, 
3` 

using lim~(e3`c - ce3`) = O. 

Since (d,~)oeA is an approximate  diagonal and (e/3)~eB is bounded we get 

from the inequality 

II(cd~, - d o c )  • e/3 ® e-,ll s II(cdo - d,~c)II IleMI I1~-,11 

tha t  

and so 

lim l imsup lira sup I[(cdo - d o c )  • ez ® e~ll = 0 ,  
a /3 3, 

lim lim sup lim sup IIc.p~/3.~ -p~/3~.c l l  = o, 
o /3 3` 

Furthermore ,  

lira l imlim 7r(p~.y)e = lim limlivm ~r(do.  (e/3 ® e~))c 

= liml~mTr(d. • (e~ @ 1))c 

= lirn 7r(do)c 

---- C~ 

where the second and third equali ty follow from (e/3)~CB being a left approximate  

identi ty for 2" and /7 being a left ideal, and the last from (d , )oe .a  being an 

approximate  diagonal. It  follows tha t  we may choose a net  from {PoZ3`l a E 

A; /3, */E B} which is an approximate  diagonal for Z. Therefore  2" is amenable.  

| 

This theorem is an improvement  on the last assertion in Proposi t ion 5.1 in 

[J]. It may  also be shown, by a similar argument  but  with d,~(e~ ® eT) in place 

of do • (e/3 @ eT), that ,  if A is an amenable Banach algebra and I is a two-sided 

ideal in ,4 with a bounded left approximate  identity, then 2- is amenable.  



308 N. GRONB/EK ET AL. Isr. J. Math. 

COROLLARY 5.2: Let X be a Banach space such that IC(X*) is amenable and 

IC(X) has a bounded two-sided approximate identity. Then IC(X) is amenable. 

Proof'. ]C(X) a, which is anti-isomorphic to ~(X) ,  is a closed left ideal in/C(X*) 

and has a bounded two-sided approximate identity. 1 

Example 4.3 in [G&W] provides a Banach space, X, such that/( :(X*) has 

a bounded two-sided approximate identity but ~ (X)  does not. This example 

suggests that  the hypothesis that  ~ (X)  has a bounded two-sided approximate 

identity is necessary. However, if X has the approximation property it is not. 

COROLLARY 5.3: Let X be a Banach space such that J:(X*) is amenable. Then 

J: (X)  is amenable. 

Proof  Since ~c(X*) has a bounded left approximate identity, X* has the 

bounded approximation property, by [D, Theorem 2.6]. Hence, by [G&W, The- 

orem 3.3], 9v(X) has a bounded two-sided approximate identity. | 

It is an open question, which is discussed further in Section 7, whether 

amenability of/C(X) implies that  X has the approximation property. 

The converse to Corollary 5.2 holds if ~(X*) has a bounded two-sided 

approximate identity. This fact will follow from another stability property of 

amenability. 

THEOREM 5.4: Let ,4 be a Banach algebra which has a bounded two-sided ap- 

proximate identity and let Z be a closed, left ideal in ,4 which is amenable and 

has a bounded left approximate identity/'or ,4. Then ,4 is amenable. 

Proof." By Proposition 1.8 in [J], it will suffice to check that  all derivations from 

A into duals of essential `4-bimodules are inner. (An `4-bimodule Y is essent ia l  

if Y = span{a.y.b: a, b E A; y E Y} ,  because, with the hypothesis of a bounded 

approximate identity, this last space is closed.) 

Let D: `4 ~ Y* be a derivation, where Y is an essential `4-bimodule. Since 

is amenable, there is y* in Y* such that  Da = a.y* - y*.a for every a in 2:. 

Then the map, & `4 --* Y*, defined by 6a = a.y* - y * . a  is an inner derivation 

from A and so D - ~f is a derivation from A whose restriction to Z is zero. 

Now let a and b belong to ,4 and let (ex)xeA be a bounded net in 2: which 
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is a left approximate identity for ,4. Then, since 77 is a left ideal, 

0 = lim(D - 6)(aex).b 

= li~n(D - 6)(a).exb 

= (D - 6)(a).b, 

where the two first identities are true because D - $ is a derivation which anni- 

hilates :Z, and the third because (e~)xeh is a left approximate identity. 

It follows that (b.y, (D - ~)(a)) = 0 for every y in Y and a and b in `4. 

Since Y is essential, D = (f and is thus inner. | 

The next result may now be proved in a similar way to Corollary 5.2. 

COROLLARY 5.5: Let X be a Banach space such that ]C(X) is amenable and 

1E(X*) has a bounded two-sided approximate identity. Then IC(X*) is amenable. 

The argument of Proposition 6.1 in [J] shows, without change, that/C(c0) 

is amenable. It follows from this corollary and the fact that/(:(gl) has a bounded 

two-sided approximate identity that ~(gl) is amenable. Proposition 6.1 in [J] 

does not yield this fact about gl directly, although we have shown it in Section 

2 by modifying the argument in [J] suitably. 

Example 5.6: The requirement in Corollary 5.5 that  /C(X*) have a bounded 

two-sided approximate identity is necessary. Since g2 is reflexive it has the RNP. 
V 

Hence, by Theorem 2.5, g2 ®g2 is a tight tensor product and so, by Theorem 2.2, 

9r(g2 ~ g2) is amenable. Now (g2 v v ® g2)* is isomorphic to t2~g2 and (g2 ® t2)** to 
V 

Y(g2). Since ~'(g2 ® g2) has a bounded two-sided approximate identity, Jc(t2~g2) 

has a bounded left approximate identity, see [G&W, Theorem 3.3]. However, 

B(H) does not have the approximation property (see [Sz]) and so ~'(g2~t2) does 
V 

not have a bounded right approximate identity. Therefore, ~'((g2 ® g2)*) is not 

amenable. 

6. D i r e c t  s u m s  

In the following it is necessary to use the algebra of double multipliers on a Banach 

algebra A. A double multiplier on ,4 is a pair of bounded operators, (L, R), on A 

which commute and satisfy, for all a and b in `4: L(ab) = L(a)b; R(ab) = aR(b); 

and aL(b) = R(a)b. Denote the set of all double multipliers on .4 by M(A).  Then 
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M(`4) is a Banach space with the obvious norm and sum and becomes a Banach 

algebra when equipped with the product (L1, R1)(L2, R2) = (LIL2, R2R1). It 

T = (L, R) is a double multiplier on A, then L(a) will be denoted by Ta and 

R(a) by aT. 

Each element, a, of A determines a double multiplier, (La, Ra), where L~ 

and R~ are respectively the operators on ,4 of left and right multiplication by a. 

Similarly, if A is embedded as an ideal in a Banach algebra B, then each element 

of g determines a double multiplier on A. Thus each operator on the Banach 

space X determines a double multiplier on )E(X) and on ~'(X). Note also that 

there is always an identity, I, in M(`4). 

Now let P1 be an idempotent in M(A) and put P2 = I - P1 and Aij = 

PiAPj, i , j  = 1, 2. Next put A~I = 7r(¢412~`421 ) and `4~2 --~ 7I(.A21~.A12), where 

lr denotes the product in ,4. Then .4o is isomorphic, as a linear space, to the 

quotient of `4~j~`4j~, j ~ i, by ker(~r) n (`4~j@`4j¢). Let I1.11 ° denote the quotient 

norm on `41 °. 

In this section we prove a couple of abstract results about the stability of 

amenability when `4 is cut down to `411 by an idempotent in M(`4) and then 

apply them to the case where `4 = /¢(X) for some Banach space X and P1 is 

determined by a projection on X. We will thus establish some stability properties 

of amenability of /E(X) under direct sums of Banach spaces. 

PROPOSITION 6.1: Let `4 and `4ij, i , j  = 1,2, be as above. Then `4 has a 

bounded two-sided approximate identity if and only if`411 and `422 have bounded 

two-sided approximate identities and `4ii is an essential/eft `4~i- and right Ajj-  

module, i , j  = 1,2. 

Proof'. Let {e;~}xEh be a bounded net in A. Then {PlexP1 + P2e~P2}xe^ is a 

two-sided approximate identity if and only if {Pie~Pi}~Eh is a two-sided approx- 

imate identity in `4ii, a left approximate identity for `4~i and a right approximate 

identity for Aji, i = 1, 2; j ~ i. | 

The first of the abstract results is the following 

THEOREM 6.2: Let `4 and A~j, i , j  = 1,2, be as above and suppose that A 

has a bounded two-sided approximate identity and that ,422 = A~2. Then A is 

amenable f f and  only f l a i l  is amenable. 

Proof." The inclusion map A~2 ~ A22 is continuous and is also a surjection. 

Hence, by the open mapping theorem, [[.[[o is equivalent to the given norm on A22. 
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Furthermore, since .4 has a bounded two-sided approximate identity, Proposition 

6.1 shows that .422 also has a bounded two-sided approximate identity. Therefore 

there is a bounded net {c~}~eB in .421~.412 such that {:r(c~)}aes is a bounded 

approximate identity for .422. The elements of this net have the form c a = ~ i  r~® 

s~. 
Now suppose that  .411 is amenable and let {d~l}~eA be an approximate 

diagonal for .411. We will show that .4 is amenable by showing that  it has an 

approximate diagonal consisting of elements of the form 

d~,~ = d~l + cad~l. 

Here we have equipped A@.4 with the product (a®b)(c®d) = ac®db as described 

in the introduction. Note first of all that the set of all such elements is bounded 

because [[ d ~,al[ _< [IdYll[(1 + II call) • In order to prove that an approximate diagonal 

can be constructed, we shall use the following 

(6.1) 
liam[(Tr(c ) ® 1)(a2, ® 1) - (1 ® a21)c]d?l 

= liarn[(a12 ® 1)c - (1 ® ~-(c))(1 ® a12)ld~1 = 0, 

for each c E `421@A12 and aij E `4ij. It is enough to prove (6.1) for c an 

elementary tensor b21 ® b12. Then the first expression equals (b21 ® 1)(b12a21 @ 

1 - 1 ® b12a21)d~1, which tends to zero, because (d~l) is an approximate diagonal 

for .411. The other limit is obtained analogously. 

We will show that  

(6.2) liplip ( ",')a=a (he A), 

and 

(6.3) lim limsup ]l(a ® 1 - 1 ® a)d~'~]l = 0 (a e `4). 

This will imply that  an approximate diagonal can be constructed from the d~'~'s. 

First we prove (6.2). If a is in A, then a = Pla + P2a and (6.2) follows 

because we have 

lim Ir(d~'~)Pla = lim " f f (d~ l )P la  : Pl a, 
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since or(c~d~l ) E A21v:(d~l)A12 and or(d~l ) is a bounded approximate identity for 

.All. Likewise 

l~n lim ov( d'~'~ ) P2a = lim lira or(c/3 d~l ) P2a 

= lim~r(c~)P2a = P2a, 
f~ 

again since 7r(c3d~l ) E .A217r(d~l).A12. 

Now we prove (6.3). Since a = al l  + a12 + a21 + a22, where aij is in ,A~j, 

we may treat these terms separately. We have 

( a 1 1 ® 1  - 1 ® a l l ) d  "'~ -- (a11®1 - 1®al l )d~l ,  

(a12®1 - l@a12)d"'3=(a12@1)c3d~l - (1@a12)d?l, 

( a 2 1 ® l - 1 ® a 2 1 ) d " ' ~ = ( a 2 1 ® 1 ) d ? l - ( 1 ® a 2 1 ) c 3 d ? l ,  

( a 2 2 ® l - l ® a 2 2 ) d ~ ' 3 = ( a 2 2 ® l - l ® a 2 2 ) c 3 d  ~'~. 

Clearly the first term tends to 0 as (~ 

rewritten as 

c¢. The second term may be 

- -  a ~ c t  
((a12 ® 1)c3 (1 ® 7r(c3))(1 @ 12))dll -b 1 @ (a127r(c3) - a12)d11 

so that,  using (6.1) and that (0r(cz))lse B is a bounded right approximate identity 

for ,412, the statement (6.3) is true in this case. 

The third term may be rewritten as 

( ( r ( c~)@l) (a21®l)  - (1@a21)c3)d~1 + ((a21 -r (c3)a21)®l)d~1 

and treated analogously. 

For the fourth term it is enough to look at elements of the form a22 : -  b21b12 

since by assumption these elements span a dense subset of A22 and we are working 

with bounded nets. We then get 

( a 2 2 ® 1 -  l@a22)d ~'3 

= ( b 2 1 ® l ) ( b i 2 ® l - l Q b 1 2 ) d ~ ' 3 q - ( l ® b i 2 ) ( b 2 1 ® 1 - l ® b 2 1 ) d  ~'~, 

so that this case follows from the two previous cases. 
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To prove the converse, suppose now that ,4 is amenable and let 

{d'~},~eA be an approximate diagonal for ,4. Using the multiplier multiplica- 

tion (Pi ® Pj)(a ® b) = P~a ® bPj and (a ® b)(P~ ® Pj) = aP~ ® Pjb, we define 

d~f  = ( P l ® P 1 ) d ~ ( P l ® P l + c ~ )  ( a e A ,  f l E B ) .  

First note that for an elementary tensor we have 

so that  

lim~((. ® b)c,) = lim.((~ ® b)(P~ ® P~)c~) 

= limaP2~r(c~)P2a 

= aP2b 

= r((a ® b)(P2 ® P2)) 

lim r(d~'{ 0 ) ~  = Px li~m ~r(da (P1 ® P1)+ c~)P1 

= Plr(d~(P1 ® Px + P~ ® P2))Px 

= P17r(da)P1, 

which is a bounded left approximate identity for ,411, directed over a E A. 

For a l l  E ,411 we have 

(all  ® 1 - 1 ® a n ) d ~ f  = (an  ® 1 - 1 ® a n ) ( P l  ® P1)d~(P1 ® P~ + c~) 

= (Pa ® P~)(an ® 1 - 1 ® a l l )d" (Pr® P1 + c~), 

which tends to 0 as a --* o¢, because (d~)~eA is an approximate diagonal for ,4. 

This concludes the proof of the theorem. | 

We now give some applications of this theorem in the case when ,4 =/C(X).  

THEOREM 6.3: Let X be a Banach space. Then IC(X) is amenable if and only 

if lC( X ~ C) is amenable. 

Prooiq Let ,4 = /C(X ~ C) and P1 be the projection of X @ C onto X with kernel 

C. Then P2 = I - P1 is the rank one projection onto C with kernel X. Hence 

,422 = P21C(X ~ C)P2 is the one-dimensional algebra spanned by P2. 

It is easily seen that  ¢422 = ,4~.  Furthermore, since ,422 has an identity, 

A has a bounded two-sided approximate identity if either A or Al l  is amenable. 

Theorem 6.2 now applies. | 



314 N. GRONB~K ET AL. Isr. J. Math. 

Many of the classical Banach spaces are isomorphic to their direct sum with 

the one-dimensional space and are also isomorphic to their hyperplanes. For some 

time it was an unsolved problem, the so-called 'hyperplane problem', whether 

every Banach space has this property. However, it is now known ([G&M]) that 

there is a Banach space which is not isomorphic to any proper subspace and sc 

the above theorem has some content. 

An important class of Banach spaces is the class of/:p-spaces, where 1 _< 

p _< ~ ,  which were introduced in [L&P]. The Banach space X is said to be an 

L:p,x-space if there is a constant A > 0 such that for every finite dimensional 

subspace, B, of X there is a finite dimensional subspace, C, of X such that  

B C_ C and d(C, gp) < A, where n -- dim C. (If Y and Z are isomorphic Banach 

spaces, then d(Y, Z) is inf(llTII, lIT-111), where the infimum is over all invertible 

operators, T, from Y onto Z.) Some examples of £p-Spaces are ep and Lp(0, 1). 

We have already seen in Theorem 4.7 that the algebras of compact operators on 

these examples are amenable. 

Theorem III(c) in [L&:R] shows that £p-spaces satisfy stronger conditions 

than they are defined to have. Thus, if X is an Lp-space, then there is a constant 

A' > 0 such that for every finite dimensional subspace, B, of X there are a 

finite dimensional subspace, C, of X and a projection, P, of X onto C such that: 

B C_ C, d(C, ~ )  _< A', where n = dim C; and I]Pll < A'. It follows that every 

Z:p-space has the approximation property, and so ~ ( X )  -- Jr(X) whenever X 

is an £p-space. It follows also that,  if X and Y are infinite dimensional /:p- 

spaces, then every T in ~ '(X) is a product T = UV, where U: X --* Y and 

V: Y --+ X are compact operators. Furthermore, if X is an £:p-space, then 

X* is an £:q-space, where q-1 + p-1 = 1 ([L&R, Theorem III(a)]). Hence X* 

has the bounded approximation property and so .T(X) has a bounded two-sided 

approximate identity ([G&W, Theorem 3.3]). We are now ready to prove 

THEOREM 6.4: Let 1 <_ p <_ oo and let X be an £p-space. Then ~ ' (X) is 

amenable. 

Proof: Let ,A = ~(gp @ X) and let P~ be the the idempotent in M(.A) deter- 

mined by the projection onto gp with kernel X. Then A has a bounded two-sided 

approximate identity because Al l  = jr(g~) and A22 = Y ( X )  do. Also, since each 

compact operator on X factors through gv, A~2 = ,422. Therefore, since F(ep) is 

amenable, jr(gp ~) X) is amenable by Theorem 6.2. 
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That ~'(X) is amenable now follows from another application of Theorem 

6.2 because ~( /p  G X) has a bounded two-sided approximate identity and every 

compact operator on ~v factors through X. | 

The finite rank projections on £p-spaces which were described above almost 

show that these spaces have property (A). The projections may be used to 

produce a net of biorthogonal systems satisfying A(i) and A(iii). However, it is 

not clear that  the net will satisfy A(ii). If it could be shown that £p-spaces in fact 

have property (A), then there would be a direct proof of the amenability of ~'(X) 

for these spaces. It seems that  indirect arguments are needed to establish many 

of the properties of £:p-spaces, see the remark after the statement of Theorem III 

in [L&R], and so it may be that they do not have property (A) . Some specific 

examples for which this may be tested are the spaces t2 @ tp. For 1 < p < co, 

/2 @ ep is a £;p-space, see [L&P], example 8.2, but it is not clear that  it has 

property (A). 

Theorem 6.2 may be used to show that  .T(X) is amenable for some other 

spaces which may fail to have property (A). Let {nk }~o= 1 be a sequence of positive 

integers and choose p and q with 1 _< p, q < oo and p ~ q. Put  X = ((~k°°__l ~ ) t , .  

Then X has the bounded approximation property and so /E(X) = ~'(X). If 

{nk}k~__l is bounded, then X is isomorphic to gq and so we will suppose that  

{nk}~=l is not bounded. Clearly X is isomorphic to a complemented subspace 

of ((~k~__l ~p)t~ and so every T in .~(X) is a product T = UV, where U is in 

((~k=l p)*,) and V in ~(((~k=ltp)e,,X). 
We also have that every T in ~v(((~)~°=l tp)tq) is a product T = UV, where 

oo ~ oo V is in -~(((~)k=l p)e~,X) and Y in .T'(X,((~k=lep)tq). To see this, for each 

r let Pr be the natural rank r 2 projection of ((~°=1 tp)tq onto ( ~ : = 1  e~,)t,. 

Then {Pr}r°°__ 1 is a bounded left approximate identity for ~'((~k°°__l tp)t,) and 
oo T oo so T = ~-'~=1 P* r, where ~ = 1  IIT~II < co. Since {nk}~=l is not bounded, X 

has a complemented subspace isomorphic to ((~=1($k=1 p)e,)e,. Hence we 

have for each r that P~ = UrV~, where U~ is in ~'(((~)k~=l tp ) t , ,X)  and V~ in 
Z ~ t ~(,((~k=lep)t,), IIU~II = 1 = IIVrll and U,.V, = 0 if r ¢ s. It follows that  T 

factors as required. 

Now .T(((~k~__l ep)t,) is amenable, see Corollary 4.8. The above remarks 

about factoring approximable operators therefore allow us to apply Theorem 6.2 

to prove 
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THEOREM 6.5: Let  {nk}k°°__ 1 be a sequence o f  posi t ive integers. Then the algebra 

Jr(((~k°°__l ~'~ )£, ) IS amenable. 

It was remarked above that  ~(~p ~ ~2) is amenable. This suggests that  

Jr(tp (D ~q) may be amenable for all p and q. That  this is not so will follow from 

a further general result about amenable Banach algebras. 

Definition 6.6: A Banach algebra B has trivial virtual centre if, for each b** in 

B** with bb** = b**b for all b in B, there is A in C with bb** = Ab = b**b for all b 

in B. 

The algebras in which we are interested have this property. 

PROPOSITION 6.7: Let X be a Banach space. Then J r (X )  has trivial virtual 

centre. 

Proof." Let P be a rank one projection on X. Then P J r ( X ) P  = CP. Suppose 

that  B~* in Jr(X)** satisfies BB~* = B~*B for all B in Jr(X).  Then PB~* = 

P2B~* = PB~*P.  Since the map B** H P B * * P  is the second adjoint of the map 

B ~-+ P B P ,  it follows that  there is Ao in C such that  PB~* = )~oP. Consequently 

{T E Jr(X)l TB~* = AoT} is a non-zero closed two-sided ideal in the simple 

Banach algebra Jr(X).  Therefore TB~* = AoT for all T in Jr(X).  | 

For the next theorem let `A and `A~ be as above. 

THEOREM 6.8: Suppose that `A is amenable,  that  ,Al l  and ,,422 have trivial 

virtual centre and that  `A21 and A12 are not  both zero. Then `Ajj = `A~j for at 

least one value o f  j .  

Proo~ Denote A ° = {a E `A [ PiaP/ E `Ai° i, i = 1, 2}. On A ° define the norm 

Hail ° = max{[[PlaPll[ °, ][PlaP2[[, [[P2aPI[[, [[P2aP2[[°}. Then, for a E A, a ° E 

,A° we have I[aa°[] ° _< 2[[a[[[[a°[[ ° and []a°a[[ ° _< 2[[a][[[a°][ °. Hence (,A°, [I.[[ °) is a 

Banach A-b/module. 

The map a ~ PlaP2 - P2aP1 = P la  - aP1 is a derivation from `A into A ° 

and so there is C in (A°) ** such that  PlaP2 - P2aPI = aC - Ca for all a in `A. 

Since A ° = ~i,j=l,2 P/A°PJ ,  we have C = E i , j = I , 2  c/j, where C/i belongs to 

(P, A o P j )  **. 

If aii belongs to ,Aii, then al iC - Caii = 0. In particular, aiiCii - C/iaii = 0 

for each aii in ,Aii, where C/i belongs to (,A/o)**. Now the second adjoint of the 

inclusion map ,Ai ° --+ ,All embeds (Ai°) ** in (Aii)** and so, since Aq~ has trivial 
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virtual centre for each i, there are A1 and A2 in C such that aiiCii = Aiai~ = Ciiaii 

for aii in `Ai~, i = 1, 2. 

Suppose, without loss of generality, that  ,412 is not zero and choose hi2 ~ 0 

in `A12. Since `A is amenable, it has a bounded two-sided approximate identity and 

so, by Proposition 6.1, `A12 is an essential left `All- and essential right `A22-module. 

Hence there are a l l  in All, a22 in ~422 and a12 in A12 with a12 = alla12a22. 

We have hi2 = al2C - Cal2 -= a12622 - Cllal2.  Substituting for a12 we get 

hi2 = a11a12a22C22 - Cllalla12a22 = .~2al1512a22 - ~1a11512a22 = ()~2 - )~1)a12. 

Therefore A2 - A1 = 1 and so at least one of A1 and A2 is not zero. 

Suppose that  A1 7 t 0 and put b** = A~-1Cll. Then b** belongs to (A~I)** 

and allb** = al l  for every al l  in All .  Hence, if {b'~}~eA is a bounded net in A~I 

which converges to b** in the weak*- topology, then { a l l b ~ } ~ A  converges weakly 

to all .  It follows, as in [B&D, Proposition 11.4], that there is a net {ef~}ZEB, each 

e ~ being a convex combination of b~'s, which is a right approximate identity for 

,All. The approximate identity {efl}/3es is bounded, by IIb**l[, in (,A~I, [[.H °) and 

,A~I is an ideal in All .  Hence for each a l l  in `AH and each e > 0 there is c = a l le  f~ 

with Hall - c]l < ( and Ilcll ° < 211b**Nlla111]. Consequently, for each al l  in `All, 

there is a series ~ i  ci in ,A~I with ~ i  Ilcill ° < oc and ~-~i ci = a11. Therefore 

A~I = A l l .  | 

These last two results may be reformulated to say that  the spaces X with 

9c(X) amenable have a property which is a little like being primary. Recall 

that a Banach space, X, is p r i m a r y  if, for every bounded projection Q on X, 

either Q X  or ( I  - Q ) X  is isomorphic to X, see [L& T, Definition 3.b.7]. Let 

us say that X is a p p r o x i m a t e l y  p r i m a r y  if, for every bounded projection Q 

on X, at least one of the product maps 7r: .T(X,  Q X ) ~ . 7 : ( Q X ,  X )  ---* J : ( X )  or 

lr: .~(X,  ( I  - Q ) X ) ~ . ~ ( ( I  - Q ) X ,  X )  ---* . T ( X )  is surjective. Then every primary 

space is approximately primary as is every space with a subsymmetric basis, see 

[L&T, Proposition 3.b.8]. 

Now put ,4 = ~ ' (X)  and suppose that  A is amenable. Let P1 be the 

idempotent in M ( A )  determined by a bounded projection Q on X. Then Al l  is 

isomorphic to . ~ ( Q X )  and -422 to ~ ' ( ( I  - Q ) X ) .  Hence, by Proposition 6.7, A~i 

has trivial virtual centre for i = 1, 2. Clearly, `A12 is not zero and so, by Theorem 

6.8, A~ = Aii for at least one value of i. It follows that,  if ~ ' (X) is amenable, 

then X is approximately primary. 
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THEOREM 6.9: I f  1 < p, q < co, p ~ q and neither p nor q is equal to 2, then 

Y~(~p @ ~q) is not amenable. 

Proof: In view of 6.7, 6.8 and the remarks following it suffices to show that, 

if 1 < p,q < co, p ¢ q and neither is equal to 2, then the product map 

7r: ~-(~p, eq)~:T(~q, ~p) --~ .T(ep) is not surjective. 

Suppose that 7r is surjective. Then, by the open mapping theorem, there 
¢o U is a K > 0 such that for each T in ~'(ip) we have T = ~r(~n= 1 ,~ ® Vn), where 

Z~__I IIU~IIIIV~II < KIITI]. It follows, since gq is isomorphic to (@n°°__l~q)e,, that 

T -- UV, where U is in Y:(~p,~q), V in Y:(gq,~p) and IIUIlllYll < KIITII. 

Let Pj be the projection onto the span of the first j vectors of the standard 

basis for gp. Then, since we are supposing that ~r is surjective, Pj = UjVj where 

IIUjlIIIVj[I < K. Put  Qj = VjUj. Then Qj is a projection on eq and IIQjll < K. 

Defining U~ = Pj Uj Qj and U = Qi Vj Pj, we have that U~ is an isomorphism from 

the range of Qj to the range of Pj, V~ is the inverse of U~ and ItujllllUII < K 3. 
Hence, if lr is surjective, then gp is finitely representable in eq, see [Wo, Definition 

II.E.15], in the strong sense that the canonical projections Pj: ep -~ ep factor as 

described. It is known that this is not so if p ¢ q and neither is equal to 2. There 

are several cases. However, if p~ and q~ are the conjugate numbers to p and q 

respectively, we obtain a similar factorization of Pj: ~p, ~ ~p, through ~q, just by 

taking conjugate maps.Hence we need only consider the following three cases. 

First, suppose that p < 2 < q. If ep were finitely representable in gq, then, 

since ga is of type 2, ep would be of type 2. (See [Wo, Definition III.A.17 and 

Theorem III.A.23] ) That is not so. Therefore lp is not finitely representable in 

~q. 

Next, suppose that 2 < q < p. If ~p were finitely representable in gq, then, 

since gq is of cotype q, gp would be of cotype q. Since gp is not of cotype q, gp is 

not finitely representable in gq. 

Finally, suppose that 2 < p < q. If gp were finitely representable in gq, 

then ~p would be isomorphic to a subspace of Lq(#) for some measure #, see 

Proposition 7.1 in [L&P]. It would then follow, by Corollary 2 in [K&P], that  

gp had a complemented subspace isomorphic to 22 or gq. However, that is not 

possible because, by Proposition 2.c.3 in [L&T], every operator from tp to g2 and 

every operator from gq to gp is compact. This argument is also sketched on [Wo] 

pages 104 and 107. | 
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The above proof also shows that ~'(co @ fp) is not amenable when p < 2 

but does not treat the case p > 2. Similarly, ~'(fl • gp) is not amenable when 

p > 2 .  

We conclude this section with a result which shows that amenability of 

Jr(X) is partially preserved on complemented subspaces of X. 

6.10 THEOREM: Let X and Y be Banach spaces and suppose that 3~(X • Y) is 

amenable. Then at least one o[ ~ ( X )  and Y ( Y )  is amenable. 

Proo~ Put ,4 = Jr(X ~ Y) and let P1 be the idempotent in M(,4) determined 

by the projection onto X with kernel Y. Then, by 6.7 and 6.8, ,4jj = ,4~j for at 

least one value of j. By Theorem 6.2, it follows that at least one of ,411 and ,422 

is amenable. Since ,411 is isomorphic to Jc(X) and ,422 is isomorphic to ~'(Y), 

the result follows. | 

The conclusion of this last theorem is the best possible, that is, there are 

spaces X and Y such that ~'(X @ Y) is amenable but ~'(X) is not. For example, 

let X = co @ ~1 and Y = el(CO) = (~nC~=l C0)~. Then Z @ Y is isomorphic to Y. 

Hence ~'(X ~ Y) and :~(Y) are amenable by Corollary 4.8. On the other hand, 

~'(X) is not amenable by Theorem 6.9. 

7. Open questions and conclusion 

The name 'amenable' is used for a Banach algebra ,4 satisfying the cohomolog- 

ical condition Hi(A,  X*) = 0 for all Banach A-modules X, see [J], because of 

the theorem that a group algebra L I(G) satisfies this condition if and only if 

the locally compact group G is amenable, [J]. Amenability is an important prop- 

erty of groups which has many characterizations. As well as the cohomological 

characterization of the group algebra, it may be described in terms of group 

representations, fixed points of group actions, translation invariant functionals 

and in other ways. The F¢lner conditions on compact subsets of the group char- 

acterize amenability in terms of properties intrinsic to the group. Alternative 

characterizations of the amenability of/C(X) and ~'(X) would help us to have a 

better understanding of its significance. We are thus led to ask 

QUESTION 7.1: What are the intrinsic properties of the Banach space X which 

are equivalent to amenability of IE(X) and ~r(x)? 

The results we have obtained so far suggest that amenability of/E(X) and 
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.~(X) may be equivalent to some sort of approximation property for X. Such an 

approximation property, if it were to exist, would be the analogue of the Folner 

conditions. 

Approximation properties are certainly necessary. Since an amenable alge- 

bra has a bounded two-sided approximate identity, if/C(X) is amenable, then X* 

has what is called in [G&W] the B -/C(X) a- AP, and in [Sa] the . -  b.c.a.p., that 

is, the identity operator on X* is approximable in the topology of convergence 

on compacta by operators which are adjoints of compact operators on X. It also 

follows, by [D, Theorem 2.6], that X has the bounded compact approximation 

property. Similarly, if ~'(X) is amenable, then X and X* have the bounded ap- 

proximation property. However, the relationship between amenability of/C(X) 

and the approximation property is not clear. 

QUESTION 7.2: Does amenability of lC(X) imply that X has the approximation 

property? 

If there should be a Banach space X which does not have the approximation 

property but is such that /C(X) is amenable , then IC(X)/jr(X) would be a 

radical, amenable Banach algebra. At present no example of such a Banach 

algebra is known. 

Theorem 6.9 shows that for Jr(X) to be amenable it does not suffice that 

X* have the B - ~'(X) a- AP. It seems necessary for there also to be some sort 

of symmetrization of the approximation property. We have seen, in Section 4, a 

symmetrized approximation property, property (A), which forces the amenability 

of Jr(X). This property was used to show that 9v(X) is amenable for many of 

the classical Banach spaces and for spaces with a shrinking, subsymmetric basis. 

QUESTION 7.3: Is property (A) or some similar symmetrized approximation 

property equivalent to amenability of ~:(X) or K:(X)? 

In order to determine how close this property is to being equivalent to the 

amenability of ~-(X), it would be useful to investigate whether Jr(X) is amenable 

if X is a space which is clearly unlikely to have this symmetrized approximation 

property. Examples that come to mind are the James space, which does not have 

an unconditional basis ([L& T, 1.d.2]), and the Tsirelson space, which contains 

no subsymmetric basic sequence ([L& T, p. 132]). 

QUESTION 7.4: Is Jr(x) amenable if X is the James space or the Tsirelson space? 



Vol. 87, 1994 COMPACT OPERATORS 321 

We have seen that  the class of spaces, X, such that iv(X) is amenable is not 

closed under direct sums or under passing to complemented subspaces. However, 

any space, X, such that :~(X) is amenable has the property that X* satisfies the 

B - ~ ' (X) ~- AP and this property is inherited by complemented subspaces of X 

and is preserved under direct sums. Perhaps this is the most that  can be said 

about such spaces. 

QUESTION 7.5: Is the smallest space ideal containing all spaces, X ,  such that 

} : (X)  is amenable equal to the class of all Banach spaces, X ,  such that X* has 

the B - y r (x )  ~- AP?  

Recall from [Pie, Definition 2.1.1], that a space  ideal  is a class of Banach 

spaces which contains the finite dimensional spaces and is closed under direct 

sums and taking complemented subspaces. It is clear that  the class of spaces 

such that X* has the B - .T(X) ~- AP is a space ideal. Should the answer to 

7.2 be 'no', an obvious further question would be whether the class of all Banach 

spaces whose duals have the B - K:(X) a- AP is equal to the smallest space ideal 

containing all spaces, X, such that ~ ( X )  is amenable. 

It was shown by J. Lindenstrauss, see [L&:T, Theorem 3.b.1], that every 

Banach space with an unconditional basis is isomorphic to a complemented sub- 

space of a space with a symmetric basis. In view of the possible equivalence 

of the amenability of 5c(X) with some symmetric approximation property, this 

suggests the following refinement of 7.5. 

QUESTION 7.6: Is every Banach space, X,  such that X* has the B - yr(X) ~- 

A P  isomorphic to a complemented subspace of a space, Y, such that Yr(Y) is 

amenable? 

The spaces Cp, 1 _< p < c~, introduced by W. B. Johnson [Jol] will provide 

the answer to this last question. The space Cp is the gP direct sum of a sequence 

of finite dimensional spaces which is dense in the set of all finite dimensional 

spaces. It has the property that  every approximable operator factors through it 

and, for 1 < p < oc, Y:(Cp) has a bounded two-sided approximate identity. Now 

let X be any space such that X* has the B - iv(X) a- AP. Then, since Cp has the 

above properties, Theorem 5.2 implies that  :F(X @ Cp) is amenable if and only if 

Jv(Cp) is amenable. Therefore the answer to 7.6 is 'yes' if 3c(Cp) is amenable. On 

the other hand, if Cp is isomorphic to a complemented subspace of some space, 
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Y, such that  ~(Y)  is amenable, that is, if the answer to 7.6 is 'yes' when X = Cp, 

then ~'(Cp) is amenable. 

QUESTION 7.7: IS ]Z(Cp) amenable for any, and hence all, 1 < p < c~? 

Note that  C~ does not have the approximation property, see [Jo2, Theorem 3], 

and so ~'(Ci) is not amenable. 

Another theorem, similar to that  of Lindenstrauss, is proved in [J, R&Z] 

and [P], see [L&T, Theorem 1.e.13]. It says that any separable Banach space with 

the B.A.P. is isomorphic to a complemented subspace of a Banach space with a 

basis. There is an even stronger theorem, see [L&T, Theorems 2.d.8 and 2.d.10], 

that  there is a Banach space, U, with basis such that any separable Banach space 

with the B.A.P. is isomorphic to a complemented subspace of U and that  U is 

determined uniquely up to isomorphism by this property. The space U is said 

to be complementably universal for the spaces with the B.A.P. Now if X has a 

shrinking basis, then X* has the B - ~'(X) a- AP. This suggests 

QUESTION 7.8: 

(a) Is there a Banach space, V, with a shrinking basis which is complementably 

universal for the spaces, X, such that X* has the B - ~ ( X )  a- AP? 

(b) If so, is ~ (V)  amenable? 
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